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In a previous paper published in this journal, we described a new relativistic wave equation that accounts for the 
propagation of light from a source to an observer in two different inertial frames. This equation, which is based on the 
primacy of the Doppler effect, can account for the relativity of simultaneity and the observation that charged particles cannot 
exceed the speed of light. In contrast to the Special Theory of Relativity, it does so without the necessity of introducing the 
relativity of space and time. Here we show that the new relativistic wave equation based on the primacy of the Doppler effect 
is quantitatively more accurate than the standard theory based on the Fresnel drag coefficient or the relativity of space and 
time in accounting for the results of Fizeau’s experiment on the optics of moving media—the very experiment that Einstein 
considered to be “a crucial test in favour of the theory of relativity.”  

The new relativistic wave equation quantitatively describes other observations involving the optics of moving bodies, 
including stellar aberration and the null results of the Michelson-Morley experiment. In this paper, we propose an 
experiment to test the influence of the refractive index on the interference fringe shift generated by moving media. The 
Special Theory of Relativity, which is based on the relativity of space and time, and the new relativistic wave equation, 
which is based on the primacy of the Doppler effect, make different predictions concerning the influence of the refractive 
index on the optics of moving media.  
 
 

1.     Introduction 

Albert Einstein related to R. S. Shankland [1] on 
February 4, 1950 that the observational results of 
stellar aberration and Fizeau’s experimental results 
on the speed of light in moving water “were 
enough” for him to develop the Special Theory of 
Relativity, which states that the difference in the 
observations made by an observer at rest with 
respect to the source of light and the observations 
made by an observer moving with respect to the 
light source is a consequence only of the relativity 
of space and time. In fact, Einstein [2] wrote that 
the Fizeau experiment, which could be viewed as a 
determination of the correct relativistic formula for 
the addition of velocities and which showed that 
the simple Galilean addition law for velocities was 
incorrect, was “a crucial test in favour of the theory 
of relativity.”  

In this introduction, we provide context for 
Hippolyte Fizeau’s celebrated experiment on the 
optics of moving media by recounting the 
observations, experiments, mathematical deriva-
tions and interpretations concerning stellar aber-
ration that led up to Fizeau’s experiment, and its 
subsequent interpretation in terms of the Special 
Theory of Relativity. While this pedagogical tack 
involves a discussion of the complicated, 

contentious, and contradictory mechanical 
properties of the 19th century aether, we want to 
emphasize at the onset that we have no intention of 
slipping such a concept back into modern physics. 
In the Results and Discussion section, we present a 
meta-analysis that shows that the new relativistic 
wave equation based on the Doppler effect is 
quantitatively more accurate than the standard 
theory in accounting for the results of the original 
and replicated versions of the Fizeau experiment 
concerning the optics of moving media. We also 
show that stellar aberration is mathematically 
related to the new relativistic Doppler effect 
through the angular derivative. 

The phenomenon of stellar aberration, which 
was so important for the development of the 
Special Theory of Relativity, was serendipitously 
discovered by James Bradley [3,4,5], who in his 
unsuccessful attempt to observe stellar parallax in 
his quest to provide evidence for the Copernican 
heliocentric universe, noticed that he had to tilt his 
telescope in the direction of the movement of the 
Earth (Figure 1) in order to see the bright star 
named  Draconis in the constellation Draco, which 
is almost perpendicular to the elliptic path the Earth 
takes in its annual revolution around the sun. 
Bradley discovered that the position of the fixed 
star was not correlated with the change in the 
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position of the Earth in its annual voyage around 
the sun, as would be expected from 
[5,6] previous observations of stellar parallax, but 
with its annual change in velocity. 

Fig.1. The aberration of starlight that results from the 
relative motion between the star and the observer on 
Earth. The star emitted light in the past that will form the 
image observed in the present. The time delay is due to 
the finite speed of light. Stellar aberration arises from the 
finiteness of the speed of light and there would be no 
stellar aberration if the speed of light were in
the light from the star formed an image without delay. In 
navigational terms, the “past” position of a star (A) is 
analogous to its apparent position at the present time and 
the “present” position of a star (B) is analogous to its true 
position. While the apparent position of the star is 
relatively easy to consider as an instantaneous image, 
determining the true position of the star at the present 
instant of time, requires taking a number of significant 
physical phenomena into consideration, incl
relative velocity of the Earth, the position of the 
observer, the exact time of day and the refraction of the 
atmosphere. The magnitude of the aberration, which is 
given by the aberration angle (), depends on the ratio of 
the relative velocity of the star and the telescope to the 
speed of light (c). For small angles, 
where  is the velocity of the star relative to a stationary 
observer and u is the velocity of the Earth relative to the 
fixed star. 
 

Bradley, who was a proponent of the 
corpuscular theory of light, explained this 
motion of the fixed stars by assuming that
particles of light from a fixed star had
front lens of a telescope and pass through the 
telescope to the eyepiece while the telescope was 
moving. If the telescope were at rest with respect to 
the star, then one would point the telescope directly 
at the star, almost perpendicular to the ecliptic
However, since the telescope was
which was moving around the sun 
approximately equal to 30 km/s (
then one had to tip the telescope down
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relative motion between the star and the observer on 
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image observed in the present. The time delay is due to 
the finite speed of light. Stellar aberration arises from the 
finiteness of the speed of light and there would be no 
stellar aberration if the speed of light were infinite and 
the light from the star formed an image without delay. In 
navigational terms, the “past” position of a star (A) is 
analogous to its apparent position at the present time and 
the “present” position of a star (B) is analogous to its true 

While the apparent position of the star is 
relatively easy to consider as an instantaneous image, 
determining the true position of the star at the present 
instant of time, requires taking a number of significant 
physical phenomena into consideration, including the 
relative velocity of the Earth, the position of the 
observer, the exact time of day and the refraction of the 

. The magnitude of the aberration, which is 
), depends on the ratio of 

the relative velocity of the star and the telescope to the 
  =   =   

y of the star relative to a stationary 
is the velocity of the Earth relative to the 

who was a proponent of the 
explained this new 

motion of the fixed stars by assuming that the 
rom a fixed star had to enter the 

front lens of a telescope and pass through the 
while the telescope was 

at rest with respect to 
the telescope directly 

, almost perpendicular to the ecliptic. 
telescope was on the Earth, 

around the sun with a speed 
( 2AU/year), 

downward in the 

direction of motion in order to see the star through 
the eyepiece. The tipping angle would allow the 
bottom of the telescope to lag behind the top of the 
telescope so that the light particles would travel 
down the telescope barrel without hitting the sides. 
This phenomenon is known as 
16], and the angle that prescribes the difference 
between the observed position of the fixed star and 
the actual position at the instant of observation, 
known as the angle of aberration
angle of aberration is approximately 20 seconds of 
arc ( 10-4 radians), and it is a result of the 
movement of the Earth and the 
According to Bradley 
“proceeded from the progressive motion of ligh
and the Earth’s annual motion
perceived, that, if light was propagated in time, the 
apparent place of a fixed object would not be the 
same when the eye is at rest, as when it is moving 
in any other direction, than that of the line pas
through the eye and object; and that when the eye 
is moving different directions, the apparent place 
of the object would be different.”
aberration relates the position of the star in 
at the instant when it emitted the light that 
form the image, to the position of the star in 
present at the instant of time when the image is 
observed. The tangent of the angle of aberration is 
equal to the ratio of the velocity of the Earth 
the velocity of light (c): 
 

  =                          
 
From the angle of aberration and the velocity of the 
Earth’s motion, Bradley calculated that it would 
take eight minutes twelve seconds for light to 
propagate from the sun to the Earth.
that at the present time, we see an image of the sun 
as it was in the past. We would like to emphasize 
the fact that, as a consequence of the finite speed of 
progression of light [17-20]
present represents the object in the pas
first put forward by Empedocles, discussed by 
Galileo, Cassini, Roemer, 
Newton, and deeply appreciated by Bradley.


1 The light that forms the image of 
was emitted over 300 years ago, just before Bradley 
discovered stellar aberration. Makena Mason wrote a 
poem for Bio G 450 (Light and Video Microscopy at 
Cornell University) that emphasizes the time it takes 
light to propagate: 
The act of observing 
Photons moving particles 
The present never seen. 
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
The light that forms the image of Eta Centauri today 
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poem for Bio G 450 (Light and Video Microscopy at 
Cornell University) that emphasizes the time it takes 
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Pierre-Simon Laplace2, who w
proponent of the corpuscular theory of light,
hypothesized that, as a consequence of 
gravitational attraction between the mass of a star 
and the corpuscle of light, the more massive the 
star, the slower the light that emanated from it 
would be. Laplace requested that
François Arago undertake a study of the aberration 
of starlight in order to investigate th
Earth’s motion on the velocity of light emitted by
the various stars. Arago reckoned that 
index of a glass prism depended in some way on 
the ratio of the speed of light in air
light through the glass, and he hypothesized 
the daily and annular motion of the Earth would 
either add to or subtract from the 
the velocities of starlight parallel to the Earth’s 
motion and thus change the refractive index of a 
glass prism. Accordingly, Arago reasoned that the 
angle of refraction given by the Snell
Law would vary with the motion of the Earth, an
as a result, the angle of aberration measured 
through a glass prism should also vary with the 
motion of the Earth (Fig. 2). However,
1810, when Arago made the observations, 
found, contrary to expectations, 
experimental error, a glass prism introduced to th
front of his telescope refracted the starlight the 
same amount independent of the motion of the 
Earth and thus had no effect on the observed 
aberration of starlight [7, 22-26].  

In order to test the effect of the motion of the 
Earth on the refraction of light, Arago made his 
astronomical observations with or without a glass 
prism in front of the telescope both i
and in the autumn at 6 AM and 6 PM. He made the 
observations on aberration when the Earth was 
moving in opposite directions relative to the fixed 
stars so that the range of velocities of starlight 
would be the greatest. Nevertheless, Arago fou
that the angle that the starlight was refracted by the 
achromatic glass prism was constant, within 
experimental error, and independent of the velocity 
of the Earth. 

Arago based the angle of incidence on the 
apparent position of the star that he observed
given time, and he determined the angle of 
aberration from the difference between the
apparent position of   the   star   at   


2 Laplace believed that it was unreasonable to assume 
that any force, including the gravitational force, 
propagated from the source instantaneously [21].
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In order to test the effect of the motion of the 
Earth on the refraction of light, Arago made his 
astronomical observations with or without a glass 
prism in front of the telescope both in the spring 
and in the autumn at 6 AM and 6 PM. He made the 
observations on aberration when the Earth was 
moving in opposite directions relative to the fixed 
stars so that the range of velocities of starlight 
would be the greatest. Nevertheless, Arago found 
that the angle that the starlight was refracted by the 
achromatic glass prism was constant, within 
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Fig.2. The increase or decrease in the angle of aberration 
() expected by Arago as a result of the 
of the relative motion (u’ or u) between the Earth and the 
star. The inset shows the predicted change in the angle of 
refraction caused by a glass prism 
Earth’s motion assuming that the index of refraction 

varies in a velocity-dependent manner (

the refractive index of glass at rest. 
the refracted ray when u = 0, and the dotted line gives the 
refracted ray when u > 0 and the refractive index 
decreases. 
 
 
observation and the actual position a
observed the image.  The apparent position was the
position the star held at an instant 
past when it emitted the light that formed the image
observed by Arago at a later instant
finite speed of light meant, by n
image of the star was not formed 
and simultaneously with the 
that would later form the image of the star. 
null result meant that while the Snell
Law held for the refraction of light
source, glass prism, and observer were all at rest 
relative to each other, it did not hold when one took 
into consideration the velocities of the 
prism, and observer from 
reference as would be expected from Gal
relativity [27]. How could two optical phenomena 
have such conflicting dependencies on the velocity 
of the Earth? Stellar aberration was a result of the 
Earth’s motion while refraction was independent of 
the Earth’s motion. According to Arago,
time was a proponent of the corpuscular theory of 
light, the lack of effect of the
aberration angle could be explained if 
emitted light with a wide range of velocities but the 
human eye could only observe light traveling 
within a narrow range of velocities.
it appeared that the limitations of the human eye 
were responsible for the null result. 
reasonable interpretation given the then recent 
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discoveries by William Herschel and Johann Ritter 
of invisible heat (infrared) rays and chemical 
(ultraviolet) rays on either end of the visible 
spectrum.  

While Bradley and Arago considered light to 
consist of particles, Thomas Young [28] thought 
that the aberration of starlight could be reconciled 
with Robert Hooke’s and Christiaan Huygens’ 
recrudescent wave theory of light if “the luminous 
aether [which would solely set the speed of light] 
pervades the substance of all material bodies with 
little or no resistance, as freely perhaps as the wind 
passes through a grove of trees.” While the wave 
theory could account for stellar aberration, it was 
unable to account for the null effect observed by 
Arago about six years after Young wrote these 
words. Arago, who was unhappy with his own 
explanation of the null result, asked Augustin-Jean 
Fresnel if he could come up with an additional 
hypothesis that could reconcile the null result with 
the wave theory of light. Since the mechanical 
wave theory of light, unlike the corpuscular theory 
of light, required a luminiferous aether, perhaps a 
reasonable hypothesis concerning a mechanical 
property of the aether would account for the null 
effect. Fresnel realized that if the Earth transmitted 
its total motion to the aether, then the Snell-
Descartes Law of refraction would hold and 
Arago’s results would be easy to understand 
because a glass prism would refract light the same 
way no matter what the velocity of the Earth was. 
However, an aether with this property would make 
the phenomenon of aberration of the fixed stars, 
impossible. By contrast, while a stationary aether 
would allow the phenomenon of aberration of the 
fixed stars, it would result in a velocity dependence 
of the Snell-Descartes Law. Fresnel needed a way 
to reconcile these two mutually irreconcilable 
properties of the aether. He deduced that the aether 
could be endowed with a property that would 
permit the observed stellar aberration while still 
allowing it to share in part the velocity of the Earth. 
Such an aether would allow the starlight moving 
through a transparent medium to be pushed or 
pulled from its position predicted by the Snell-
Descartes Law to its observed position, making 
such a null effect intelligible.  

Fresnel [29-32] proposed a physically plausible 
mechanism based on the nascent mechanical wave 
theory that was able to quantitatively account for 
Arago’s null result. According to Fresnel’s 
mechanical wave theory, the square of the speed of 
light was inversely proportional to the density of 
the aether, and since according to the wave theory, 
the speed of light was slower in a glass prism than 

in the vacuum, the density of the aether in the glass 
prism would be greater than the density of the 
aether in the vacuum. Fresnel postulated that a 
moving glass prism did not carry all of its aether 
along with it, but only the part that is in excess 
relative to the vacuum. Consequently, the speed of 
light propagating through the moving glass prism, 
which was a function of the density of the aether, 
would be a weighted average of the speed of light 
through the stationary aether and the speed of light 
through a stationary glass prism. The weighting 
factor that characterized the proportion of aether 
carried along by the glass prism moving at velocity 
u, would be . Consequently, the aether within the 
prism would move at weighted average velocity  
where  became a function to be determined that 
would, by necessity, quantitatively lead to the null 
result. 

When modeling velocities, Fresnel had to take 
into consideration that all velocities are relative and 
must be designated with respect to a reference 
frame that can be operationally defined as static. 
Since the Earth rotates around its axis and revolves 
around the sun, it certainly is not a static reference 
frame; however, it does serve as a convenient, 
single reference frame for characterizing simply the 
motion of stars relative to an observer at rest with 
respect to the Earth. By applying the somewhat 
tedious but reliable techniques used in navigation 
for characterizing space and time, an observer at 
any location on the Earth can intelligibly describe 
the “present” position of the star to an observer 
anywhere else on Earth. On the other hand, a static 
aether, like the one put forward by Young, would 
provide an ideal single frame of reference for 
characterizing velocities (Fig. 3). While a frame of 
reference can be arbitrarily chosen in order to 
provide the simplest mathematical formulation of 
the physical events in question, a true law of nature 
should not be restricted to the esoteric properties of 
one frame of reference but should include the 
necessary transformations so that the law is 
applicable to an observer in any inertial reference 
frame who is making measurements of the events 
in question. Fresnel first considered the observation 
of starlight by an observer, such as Arago, at rest 
with respect to the Earth.  

In order to visualize the observation of a 
moving star from the perspective of a stationary 
observer on Earth, consider a ray of starlight that 
comes from a star in its “past” position and strikes 
a glass prism perpendicular to the surface as 
observed in the inertial frame of the Earth (Fig. 4). 
In this scenario, the image observed in the here and 
now is not  formed  simultaneously with the image- 
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Fig.3. The rays of starlight reckoned by an imaginary 
observer at rest with respect to a stationary aether and a 
real observer at rest with respect to the Earth. The 
imaginary observer sees the “present” position of the star 
as if the image formed instantaneously and 
simultaneously with the emission of light while the real 
observer sees the “past” position of the star that results 
from the progressive propagation of light. In navigational 
terms, the “present” position of the star is analogous to 
the true position reckoned with the aid of calculation and 
the “past” position of the star is analogous to the 
apparent position obtained solely with instruments.

 
forming light emitted by the object 
period of  time necessitated by the 
motion of light travelling at a finite speed
of starlight emitted by the star is equivalent to the 
angular wave vector of starlight and the wave 
fronts that make up the starlight coming from the 
star in its “past” position are depicted by dotted 
lines perpendicular to the angular wave vector. 
observer at rest with the Earth would point the 
telescope at the “past” position of the star when it 
emitted the light seen as an image. 
could then calculate the “present” position of the 
star using the angle of aberration. 
starlight would strike the prism perpendicular to the 
surface of the prism, the position of the image 
would be the same with or without the prism
the angle of aberration (), which is the angle made 
between the “past” and “present” positions of the 
star would be the same with or without the prism.

Fresnel then considered the observation of 
starlight from the perspective of an imaginary 
observer in a reference frame at rest with the 
stationary aether who is watching the Earth and the 
glass prism move with velocity u. If thi
were to consider the image of the star to be formed 
instantaneously upon the emission of the light that 
forms the image, then this observer would see the 
star  in   its   “present”   position.    Since
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Fig.4. The expected results of introducing a glass prism 
in front of a telescope on the position of a star observed 
as a result of the movement of the Earth relative to the 
fixed stars. A real observer at rest with the Earth who 
makes the assumption that the image is not observed 
simultaneously with the emission of the light that forms 
the image would not point the telescope at the “present” 
position of the star, but at the position in which the star 
was in the past when it emitted the light seen as an image 
of the star. The angle of aberration, which describes the 
angle made between the “past” and “present” positions of 
the star would be . Since the starlight would enter the 
telescope perpendicular to the surface, this observer 
would not observe a change in angle of aberration as a 
result of the introduction of a glass prism. By contrast, an 
imaginary observer at rest with the stationary aether and 
who expected the image to be formed instantaneously 
and simultaneously with the emission of the light that 
would form the image, would pr
presence of the glass prism, the angle of aberration 
would be  instead of , and that the value of 
depend on the velocity of the Earth through the aether. 
The star is shown in the “present” position. 
 
observer on Earth, who is the only observer with 
access to the telescope, would
telescope toward the past position of the star, the 
observer at rest with respect to the stationary 
aether, who does not have access to the telescope 
but has “eyes everywhere” at the pre
would see the starlight coming from the “present” 
position of the star strike the surface of the 
telescope at an angle such that the starlight would 
subsequently strike the eyepiece of the telescope as
it is moving forward through the aether
observer on Earth sees the “past” position of the 
star as being co-parallel with the telescope barrel, 
the observer at rest with the 
see the “present” position of the star
moving telescope (Fig. 3).  

According to the Snell
starlight that strikes the glass 
relative to the perpendicular bends toward the 
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of introducing a glass prism 

in front of a telescope on the position of a star observed 
as a result of the movement of the Earth relative to the 
fixed stars. A real observer at rest with the Earth who 
makes the assumption that the image is not observed 

multaneously with the emission of the light that forms 
the image would not point the telescope at the “present” 
position of the star, but at the position in which the star 
was in the past when it emitted the light seen as an image 

aberration, which describes the 
angle made between the “past” and “present” positions of 

. Since the starlight would enter the 
telescope perpendicular to the surface, this observer 
would not observe a change in angle of aberration as a 
result of the introduction of a glass prism. By contrast, an 
imaginary observer at rest with the stationary aether and 
who expected the image to be formed instantaneously 
and simultaneously with the emission of the light that 
would form the image, would predict that, in the 
presence of the glass prism, the angle of aberration 

, and that the value of  would 
depend on the velocity of the Earth through the aether. 
The star is shown in the “present” position.  

the only observer with 
the telescope, would have tilted the 

telescope toward the past position of the star, the 
observer at rest with respect to the stationary 
aether, who does not have access to the telescope 
but has “eyes everywhere” at the present instant, 
would see the starlight coming from the “present” 
position of the star strike the surface of the 
telescope at an angle such that the starlight would 
subsequently strike the eyepiece of the telescope as 
it is moving forward through the aether. While the 

sees the “past” position of the 
parallel with the telescope barrel, 

the observer at rest with the stationary aether will 
” position of the star through the 

to the Snell-Descartes Law, the 
glass prism at an angle 

relative to the perpendicular bends toward the 
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normal within the prism and creates an angle of 
refraction (). The Snell-Descartes Law, which was 
developed for static or instantaneous situations, 
which ironically amount to the same thing, 
describes the bending of light crossing an interface 
between air and glass with the following equation: 
 

    =            (2) 
 

where  is the refractive index of air and   
is the refractive index of glass. Since  is very 
close to unity, and since the tangent of an angle is a 
good approximation of the sine of an angle when 
the angle is small; and since when an angle is 
small, the tangent of the angle can be approximated 
by the angle itself as measured in radians, Eqn. 2 
can be written as:  
 

                  (3) 
 

Since the refractive index of a transparent 
medium is the ratio of the velocity of light in the 
vacuum (c) to the velocity of light in the 
transparent medium (v), the reckoning of the 
refractive index of the glass prism depends on the 
frame of reference of the observer. After applying 
the Galilean velocity addition law to the Snell-
Descartes Law, an observer at rest with respect to 
the stationary aether would predict that putting a 
glass prism in front of the telescope would change 
the angle of refraction of the starlight, and thus the 
observed angle of aberration would vary with the 
velocity (u) of the prism. For an observer at rest 
with respect to the aether frame, the refractive 
index of the glass would be given prima facie by: 

 

 







 




  

 
          (4) 
 
which differs from the refractive index of glass 
() measured in the frame of reference of the 
Earth and glass prism, from where u = 0. Thus an 
observer at rest with respect to the Earth would 
predict that the angle of refraction produced by a 
glass prism would not vary with the motion of the 
Earth, while an observer at rest with a stationary 
aether would predict that the angle of refraction 
produced by a glass prism would vary with the 
motion of the Earth, and as a result, add to or 
subtract from the angle of aberration determined 
without a glass prism.  

Since Arago discovered that the calculated 
angle of aberration was not influenced by the 

presence of a refractive medium, Fresnel devised a 
theory that would quantitatively explain Arago’s 
null result for an observer in any frame of 
reference. Such a theory would also have to allow 
for stellar aberration. Fresnel formulated a theory 
by finding a mechanism that would only come into 
play when the refractive index of the medium was 
significantly greater than unity and then it would 
compensate for the bending of light demanded by 
the Snell-Descartes Law. 

From the point of view of the mechanical wave 
theory of light, the frame-invariant form of the law 
of refraction must take into consideration the 
propagation of light with respect to the stationary 
aether, which according to the theory, determines 
the speed of light. By using an analogy consistent 
with the analysis of vibrating elastic strings and the 
mechanical wave theory of sound, Fresnel 
postulated that the square of the velocity of light 
through any medium was proportional to the 
density of the aether in that medium. However, if 
all of the aether contained in the glass prism moved 
at the same velocity as the prism, the refraction of 
light predicted by the Snell-Descartes Law would 
be overcompensated. On the other hand, if the 
aether were perfectly static, the refraction of light 
predicted by the Snell-Descartes Law would be 
totally uncompensated. Searching for middle 
ground, Fresnel postulated that only a portion of 
the aether in the glass prism was carried along by it 
when it moved; or equivalently; the aether within 
the glass prism traveled at velocity  where  
described the proportion of the aether that would be 
necessary to be carried along with the glass prism 
in order to compensate perfectly for the refraction 
of light predicted by the Snell-Descartes Law. 

Again consider a ray of starlight striking the top 
of a glass prism at an angle () measured relative to 
the line perpendicular to the surface as shown in 
Figs. 4 and 5. This ray is seen from the perspective 
of an observer at rest with respect to a stationary 
aether and who assumes that the image is formed 
instantaneously with the emission of light that 
forms the image. The angle ( = BAC) is the angle 
made by the perpendicular (dotted line) and the 
angular wave vector (solid line) that describes, 
from the perspective of an observer at rest with 
respect to the stationary aether, the instantaneous 
propagation of light from “present” position of the 
star. It is clear from Fig. 5 that the angle of 
refraction ( = BAC), which is predicted from the 
Snell-Descartes Law, is smaller than the angle of 
incidence, which is equal to the aberration angle ( 
= BAD) reckoned by an observer at rest with 
respect to the Earth. Angle CAD represents the 
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magnitude that the apparent wave vector must be 
rotated within the glass prism in the direction the 
glass prism moves through the aether in 
an observer at rest with respect to the stationary 
aether to reckon an aberration angle that is 
independent of the presence of the 
Substituting Eqn. 1 into Eqn. 3, we get
 



    

 
If  represents the distance (

prism moves through the stationary 
given time period (dt),  
distance (CD) the aether carried by the glass prism 
moves during the same time period,

represents the distance (AC) the light propagates 
through the aether in the glass pr
same time period. Then, assuming that ABC 
approximates a right angle, the tangent of the angle 
of refraction will be given by: 
 

   

  

  
  



  


  




 
Substituting Eqn. 6 into Eqn. 5, we get:
 



 


    

 
Solving Equation 7 for , we find:  
 

    

   

 

where   

   is known as Fresnel’s 

coefficient, drag coefficient, partial dragging 
coefficient, convection coefficient, coeffi
entrainment, or coefficient of entwinement
represents the portion of aether carried along by the 
transparent medium or alternatively the portion of 
the velocity of the transparent medium transmitted 
to the aether that is necessary to compensat
refraction of light from the “present” position of 
the star predicted by the Snell-Descartes Law
Consequently, the Fresnel drag coefficient
why the angle of aberration is the same
glass prism is placed in front of a telescope
to an observer in any frame of reference, including 
an imaginary observer who is at rest with respect to 
a stationary aether, who assumes the instantaneous 
propagation of light and the simultaneity of light 
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the apparent wave vector must be 
within the glass prism in the direction the 

ves through the aether in order for 
an observer at rest with respect to the stationary 

aberration angle that is 
independent of the presence of the glass prism. 

3, we get: 

      (5) 

represents the distance (BD) the glass 
stationary aether during a 

 represents the 
) the aether carried by the glass prism 

ves during the same time period, and 


 

) the light propagates 
glass prism during the 

hen, assuming that ABC 
approximates a right angle, the tangent of the angle 

  


 
 

         (6) 

5, we get: 

        (7) 

 

       (8) 

is known as Fresnel’s dragging 

partial dragging 
coefficient, convection coefficient, coefficient of 
entrainment, or coefficient of entwinement. It 
represents the portion of aether carried along by the 

or alternatively the portion of 
the velocity of the transparent medium transmitted 

compensate for the 
refraction of light from the “present” position of 

Descartes Law. 
, the Fresnel drag coefficient explains 

the angle of aberration is the same, whether a 
glass prism is placed in front of a telescope or not, 
to an observer in any frame of reference, including 

who is at rest with respect to 
the instantaneous 

propagation of light and the simultaneity of light 

emission and image formation, 
     


 ; and an observer

rest with respect to the glass prism
not assume simultaneity and thus points
telescope at the “past” position of the star
whom  = 0   


 

also vanishes when the refractive index approaches 
unity allows for the obs
aberration, in terms of the mechanical wave theory
and in practice. 

Fig.5. The star is shown in the “present” position. Ray 
AB describes the ray of starlight predicted by an 
observer moving with the Earth and at rest with respect 
to the telescope in the presence or absence of refraction. 
Ray AC describes the ray of starlight predicted by an 
imaginary observer at rest with respect to the stat
aether and who assumes that the image is formed 
instantaneously and simultaneously with the emission of 
the light that would form the image, in the presence of 
refraction. This observer would predict that the star 
would appear to be displaced from i
by refraction. However, observation shows that, from the 
perspective of an imaginary observer at rest with respect 
to the stationary aether, the starlight follows ray AD, 
which is the ray of starlight that would be predicted by 
an observer at rest with respect to the stationary aether in 
the absence of refraction. Rays AC and AD are clearly 
different, yet observation shows that the introduction of a 
refracting prism has no effect on the angle of aberration. 
Consequently, Fresnel introd
coefficient to compensate for the refraction by the glass 
prism and pull the refracted light that would have 
followed ray AC so that it would follow ray AD. By 
introducing the Fresnel drag coefficient, Fresnel was able 
to reconcile the mutually incompatible requirements of 
the aether and make the law of stellar aberration and the 
Snell-Descartes Law laws of physics that were invariant 
for observers in any frame of reference, including the 
imaginary observer at rest with respect to the stat
aether who assumes the instantaneous propagation of 
light and the simultaneity of light emission and image 
formation. 
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= 0. The fact that  

hes when the refractive index approaches 
allows for the observation of stellar 

mechanical wave theory, 

 
The star is shown in the “present” position. Ray 

he ray of starlight predicted by an 
observer moving with the Earth and at rest with respect 
to the telescope in the presence or absence of refraction. 
Ray AC describes the ray of starlight predicted by an 
imaginary observer at rest with respect to the stationary 
aether and who assumes that the image is formed 
instantaneously and simultaneously with the emission of 
the light that would form the image, in the presence of 
refraction. This observer would predict that the star 
would appear to be displaced from its “present” position 
by refraction. However, observation shows that, from the 
perspective of an imaginary observer at rest with respect 
to the stationary aether, the starlight follows ray AD, 
which is the ray of starlight that would be predicted by 

erver at rest with respect to the stationary aether in 
the absence of refraction. Rays AC and AD are clearly 
different, yet observation shows that the introduction of a 
refracting prism has no effect on the angle of aberration. 
Consequently, Fresnel introduced the dragging 
coefficient to compensate for the refraction by the glass 
prism and pull the refracted light that would have 
followed ray AC so that it would follow ray AD. By 
introducing the Fresnel drag coefficient, Fresnel was able 

tually incompatible requirements of 
the aether and make the law of stellar aberration and the 

Descartes Law laws of physics that were invariant 
for observers in any frame of reference, including the 
imaginary observer at rest with respect to the stationary 
aether who assumes the instantaneous propagation of 
light and the simultaneity of light emission and image 
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Above and beyond the assumption of 
simultaneity held by the imaginary observer at rest 
with respect to the imaginary aether, is Fre
tacit assumption that the glass prism has only a 
single refractive index that is invariant for all 
temperatures and for all wavelengths of light
that only the component of the angular 
that is parallel to the velocity of the prism is
affected by the motion of the prism. We can 
explicitly state these tacit assumption
indicating the wavelength ()- and temperature (
dependence of the refractive index
the cosine of the angle () between 
wave vector and the velocity vector:
 

     

    

 
The Fresnel drag coefficient 

transformation factor that compensates for the 
predictions of the Snell-Descartes Law 
conditions so that together they describ
of moving transparent media. That is, the Fresnel 
drag coefficient () is the transformation necessary 
for the Snell-Descartes Law to be 
that is invariant and thus valid in all inertial frames. 
For example, if the imaginary observer were
with respect to the stationary aether, he or she 
would reckon the speed (w) of light 
through a prism moving through the aether at 
velocity    to be:  
 

   


    


     

  

 
Assuming that an observer at rest wit

stationary aether would see the “present
of a star, the starlight would appear
prism at an angle () relative to a
perpendicular to the surface of the prism
According to Fresnel, the starlight would be 
subjected to two concurrent effects
partially dragged in the direction of motion of the 
prism as it was refracted according to the Snell
Descartes Law. As a result, the angle of aberration 
would be the same with or without the 
By contrast, for an observer at rest with the prism 
and telescope, u in Equation 10 along with the term 
representing the Fresnel dragging coefficient would 
vanish. Such an observer would see the starlight 
from the “past” position of the same star 
perpendicular to the prism and consequently
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Above and beyond the assumption of 
simultaneity held by the imaginary observer at rest 
with respect to the imaginary aether, is Fresnel’s 

the glass prism has only a 
that is invariant for all 

for all wavelengths of light, and 
angular wave vector 

parallel to the velocity of the prism is 
of the prism. We can 

assumptions by 
and temperature (T)- 

dependence of the refractive index, and including 
) between the angular 

: 

        (9) 

The Fresnel drag coefficient is the 
compensates for the 

Descartes Law under static 
so that together they describe the optics 

That is, the Fresnel 
is the transformation necessary 

 a physical law 
valid in all inertial frames. 

erver were at rest 
with respect to the stationary aether, he or she 

) of light propagating 
through the aether at 


 

      (10) 

observer at rest with the 
“present” position 

starlight would appear to strike the 
) relative to a line 

of the prism. 
starlight would be 

effects—it would be 
n of motion of the 

ing to the Snell-
the angle of aberration 

would be the same with or without the glass prism. 
an observer at rest with the prism 

10 along with the term 
representing the Fresnel dragging coefficient would 

would see the starlight 
same star strike 

and consequently the 

angle of aberration would be the same with or 
without the prism.  

Since,  


  
addition law given in Eqn. 10
for any frame of reference, can be written as:
 

      
 

Eqn. 11 explains, from the point of view of t
mechanical wave theory, why
velocities, predicted by Arago based on 
corpuscular theory of light, did
Galilean relativity where the velocities would be 
simply added [27]. Specifically, 
developed tenets of the mechanical wave theory of 
light, and the perspective of an imaginary observer 
who is at rest with the proper frame of the 
stationary aether and who assumes the 
instantaneous propagation of light and 
of light emission and image formati
that it was the tenacity or viscoelastic properties 
the aether that resulted in a nonlinear
addition law. 

Fresnel concluded his paper by saying that his 
theory invoking the partial dragging of the aether 
should be applicable to the e
proposed by Roger Boscovich
observation of stellar aberration through a 
telescope filled with water or any other fluid more 
refractive than air and moving relative to the 
stationary aether at velocity u

Fig.6. Refraction through a water
star is shown directly overhead in its “present” position. 
 

Ray AB describes the ray of starlight predicted 
by an observer moving with the Earth and at rest 
with respect to the telescope in the pres
absence of water in a telescope, for light that was 
emitted by a star in the past and took time to 
propagate through a stationary aether. Since 
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angle of aberration would be the same with or 

, the velocity 

10, which is applicable 
can be written as:  

 




      (11) 

from the point of view of the 
mechanical wave theory, why the composition of 

, predicted by Arago based on the 
corpuscular theory of light, did not conform to 
Galilean relativity where the velocities would be 

Specifically, given the newly-
s of the mechanical wave theory of 

and the perspective of an imaginary observer 
who is at rest with the proper frame of the 
stationary aether and who assumes the 
instantaneous propagation of light and simultaneity 
of light emission and image formation, it appeared 

or viscoelastic properties of 
resulted in a nonlinear velocity 

Fresnel concluded his paper by saying that his 
invoking the partial dragging of the aether 

the experiment previously 
Boscovich concerning the 

observation of stellar aberration through a 
telescope filled with water or any other fluid more 

and moving relative to the 
u (Fig. 6).  

 
Refraction through a water-filled telescope. The 

star is shown directly overhead in its “present” position.  

Ray AB describes the ray of starlight predicted 
by an observer moving with the Earth and at rest 
with respect to the telescope in the presence or 
absence of water in a telescope, for light that was 
emitted by a star in the past and took time to 
propagate through a stationary aether. Since 
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simultaneity is not assumed, the moving star would 
appear in its “past” position in the telescope. Ray 
AC describes the ray of starlight predicted by an 
observer who is at rest with respect to the 
stationary aether and who assumes simultaneity, in 
the presence of refraction by water in the telescope. 
It is predicted that the star would appear to be 
displaced from its “present” position by refraction. 
However, observation shows that, from the 
perspective of an imaginary observer at rest with 
respect to the stationary aether, the starlight follows 
ray AD, which is the ray of starlight coming from 
the star in its “present” position that would be 
predicted by an observer at rest with respect to the 
stationary ether, in the absence of refraction. Rays 
AC and AD are clearly different, yet Fresnel 
predicted and observation showed that the 
introduction of water in a telescope had no effect 
on the angle of aberration. The Fresnel dragging 
coefficient compensated for the predicted refraction 
by the water by pulling the refracted light that 
would have followed ray AC so that it would 
follow ray AD. By introducing the Fresnel drag 
coefficient, Fresnel was able to reconcile the 
mutually incompatible requirements of the aether 
and make both the law of stellar aberration and the 
Snell-Descartes Law laws of physics that are 
invariant for observers in any frame of reference. 

The situation shown in Fig. 6, like the situation 
of Arago’s prism, can be described by the form of 
the Snell-Descartes Law used for small angles: 
 



        (12) 

 
 If  represents the distance (BD) the 

telescope moves through the stationary aether 
during a given time period (dt),  represents 
the distance (CD) the aether carried by the water in 
the telescope moves during the same time period, 
and 


 represents the distance (AC) the light 

propagates through the water in the telescope 
during the same time period, then, assuming that 
ABC approximates a right angle, the tangent of the 
angle of refraction will be given by: 

 
 

  

  

  
  

  


 
 

  


  


   

(13) 
Substituting Eqn. 13 into Eqn. 12, we get: 
 

 

 


         (14) 

 
After solving for , we find:  
 
     

        (15) 

 
Thus Fresnel’s drag coefficient again provided 

the transformation necessary to explain 
quantitatively why, from any frame of reference, 
including the frame of reference at rest with respect 
to a stationary aether in which the instantaneous 
propagation of light and the simultaneity of light 
emission and image formation were tacitly 
assumed, the angle of aberration would be the same 
in a water-filled telescope as in an air-filled 
telescope. Fresnel’s derivation of the dragging 
coefficient might not seem all that reliable given 
that the velocities are referenced to a nonexistent, 
viscoelastic, stationary, mechanical aether in which 
an imaginary observer assumes that the image 
forms instantaneously and simultaneously with the 
emission of the light that forms the image. 
Fresnel’s derivation might also not be very rigorous 
[23-26,30-32] given the paucity of equal signs in 
the derivation; however, this was reasonable and 
perhaps expected since he was pioneering a new 
field of wave mechanics. Indeed the descriptive, 
predictive and explanatory power of Fresnel’s 
wave theory when it came to many optical 
phenomena, including polarization, interference, 
diffraction, reflection, refraction as well as stellar 
aberration led to a near universal acceptance of the 
mechanical wave theory of light and a reciprocal 
rejection of Newton’s corpuscular theory of light 
[24,33]. 

In 1846, George Stokes [34,35] suggested that 
while Fresnel’s complicated solution involving the 
partial dragging of aether was sufficient to explain 
stellar aberration, it was not necessary if one took 
into consideration the friction that would be 
experienced by the Earth moving through a 
viscoelastic aether since “the result would be the 
same if we supposed the whole of the aether within 
the earth to move together, the aether entering the 
earth in front, and being immediately condensed, 
and issuing from it behind, where it is immediately 
rarefied, undergoing likewise sudden condensation 
or rarefaction in passing from one refracting 
medium to another.” In 1871, Sir George Airy [36] 
performed the experiment proposed by Boscovich 
and showed that the angle of aberration of  
Draconis did not change when the telescope was 
filled with water instead of air. In his discussion he 
did not mention whether he thought that the aether 
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was partially dragged by moving bodies as 
proposed by Fresnel or completely dragged as 
proposed by Stokes.  

Fresnel [29,30] suggested that the aberration of 
light might be investigated more fruitfully in 
terrestrial experiments involving a microscope than 
in astronomical experiments involving a telescope. 
In order to understand the aberration of lig
according to the wave theory, Hippolyte 
[37-39] designed an interferometer 
perform a terrestrial experiment that
whether a moving medium did not have
on the aether as proposed by Young, completely
dragged the aether as proposed by Stokes
partially dragged the aether as proposed by 
If the first hypothesis were correct, the velocity of 
light through a transparent medium
affected by the motion of the body
second hypothesis were correct, the velocity of
light through a transparent medium
augmented by the velocity of the medium, 
consistent with Galilean relativity
hypothesis were correct, the velocity of li
through a transparent medium would be 
augmented by the velocity of the medium, 
consistent with the Fresnel dragging coefficient and 
contrary to Galilean relativity.  

Fizeau divided a beam of sunlight into two 
coherent beams with a half-silvered mirror
converging lens and two slits (Fig.
propagated through one tube of water 
beam propagated through a separate
tube. The two beams were then redirected with 
converging lens and a mirror so they would enter 
the tube through which they had not yet 
propagated. Then the two beams passed through 
the half-silvered mirror so that their interference 
pattern could be viewed with a 
microscope with an eyepiece micrometer. After 
observing the position of the interference fringes,
Fizeau let the water flow through the tubes 
that one beam of light propagated parallel to the 
movement of the water and the other beam 
propagated antiparallel to the movement of the 
water. By measuring the shift in the interference 
fringes, Fizeau could determine whether or not and 
by how much the aether was dragged with the 
moving water. 

Fizeau’s experiment is based on the assumption 
that that the speed of light () in a transparent 
medium moving at velocity (u) 
laboratory frame is given by the fo
Equation: 

    = 


 + u  
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was partially dragged by moving bodies as 
proposed by Fresnel or completely dragged as 

that the aberration of 
be investigated more fruitfully in 

terrestrial experiments involving a microscope than 
in astronomical experiments involving a telescope. 

understand the aberration of light 
Hippolyte Fizeau 

an interferometer in order to 
that directly tested 

not have any effect 
as proposed by Young, completely 

e aether as proposed by Stokes, or 
dragged the aether as proposed by Fresnel. 

If the first hypothesis were correct, the velocity of 
light through a transparent medium would not be 
affected by the motion of the body at all. If the 

s were correct, the velocity of 
ough a transparent medium would be 

nted by the velocity of the medium, 
consistent with Galilean relativity. If the third 
hypothesis were correct, the velocity of light 

ould be partially 
velocity of the medium, 

consistent with the Fresnel dragging coefficient and 

Fizeau divided a beam of sunlight into two 
silvered mirror, a 

g. 7). One beam 
tube of water and the other 

m propagated through a separate and parallel 
tube. The two beams were then redirected with a 

so they would enter 
y had not yet 

. Then the two beams passed through 
silvered mirror so that their interference 

pattern could be viewed with a horizontal 
ith an eyepiece micrometer. After 

observing the position of the interference fringes, 
through the tubes such 

propagated parallel to the 
movement of the water and the other beam of light 
propagated antiparallel to the movement of the 
water. By measuring the shift in the interference 

whether or not and 
by how much the aether was dragged with the 

Fizeau’s experiment is based on the assumption 
) in a transparent 
) relative to the 

laboratory frame is given by the following 

     (16) 

where 

is the velocity of light propagating 

through the water when it is at rest relative to the 
laboratory and is an unknown and dimensionless 
function to be determined by experiment

Fig.7. Fizeau’s experiment on the propagation of light 
through moving water. m, microscope with micrometer; 
H, half-silvered mirror; L1, L2, converging lens; S, slits; 
M, mirror. 

 
If the aether were stationary, 

found that there was no change in the position of 
the interference pattern and 
aether were completely dragged by the moving 
medium, Fizeau would have found that 
interference pattern would have shifted by 
(see below) and  would be unity
aether were partially dragged by the moving 
medium, Fizeau would have found an intermediate 
shift in the interference pattern, and
between zero and unity, and equal to

According to Fizeau, the
would take light to propagate around the 
interferometer with (parallel to
water would be given by: 
 

 






 

 
and the time () it would take light to 
propagate around the interfe
(antiparallel to) the motion of the water would be 
given by: 
 

  






 
where L is the length of the two tubes and
refractive index of water (
velocity (u) of water relative to the laboratory 
frame equaled zero, then the time difference 
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is the velocity of light propagating 
through the water when it is at rest relative to the 

is an unknown and dimensionless 
by experiment. 

 
on the propagation of light 

. m, microscope with micrometer; 
, converging lens; S, slits; 

stationary, Fizeau would have 
change in the position of 

the interference pattern and  would vanish. If the 
completely dragged by the moving 

Fizeau would have found that the 
pattern would have shifted by 




 

would be unity. Lastly, if the 
lly dragged by the moving 

Fizeau would have found an intermediate 
shift in the interference pattern, and  would be 

and equal to (1 - 

).  

According to Fizeau, the time () it 
to propagate around the 

parallel to) the motion of the 

       (17) 

) it would take light to 
propagate around the interferometer against 

the motion of the water would be 


      (18) 

is the length of the two tubes and  is the 
 = 1.333). When the 

) of water relative to the laboratory 
frame equaled zero, then the time difference 
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between the two light beams propagating in the two 
opposite senses would vanish and    
 

 -   = 0      (19) 
 
But when u   0, 
 

 -   =  




 - 




  

(20) 
 
and the difference in the optical path length (OPD, 
in m) of light traveling with and against the flow of 
water would be given by: 
 

OPD =  




 - 




      (21) 

 

OPD =  
 



 


 – 
 



 


     (22) 

 
OPD =  

 


        (23) 

 
Since  << 


, simplify Eqn. 23 by 

neglecting: 
  

OPD =  
 


        (24) 

 

OPD =  



        (25) 

 
If  were equal to unity, and the wavelength of the 
light source in air were  , then the predicted 
relative fringe shift (FS = 


) would be given 

by: 
 

FS = 


 =  



       (26) 

 
This result, to first-order accuracy, would be 

consistent with the formula for the addition of 
velocities required by Galilean relativity. However, 
if  were equal to   


, the predicted relative 

fringe shift would be given by: 
 

=  



  =  


 





      (27) 

 
which was close to Fizeau’s experimental results. 
Consequently, Fizeau concluded that, relative to 
the laboratory frame, the speed of light propagating 

through a transparent medium moving at velocity u 
is given by:  


 = 


 + u(1 - 

 )      (28) 

 
Fizeau’s experiments were repeated by Albert 

Michelson and Edward Morley [40-42] as well as 
by Pieter Zeeman [43-45] with similar results 
(Table 1) using an optically “brighter” version of 
the interferometer. The similarity between these 
experimental results and Fresnel’s drag coefficient 
formula became a watershed event in physics and 
according to Ludwik Silberstein [46], “’Agreeing 
with Fresnel’ has become almost a synonym of 
‘agreeing with experiment.’” After realizing that 
the refractive index was a function of wavelength, 
this meant that the degree that the aether was 
dragged along with the water would depend on the 
wavelength. In order to try to understand this 
complexity, many turned to mathematics to find the 
exact form of the function that described the 
wavelength dependence of the predicted fringe 
shift in Fresnel’s drag coefficient [47-54]. 
Physically, however, a conception of the 
mechanism of partial aether drag remained obscure.  

In order to increase the sensitivity of an 
experiment designed to measure the speed of light 
propagating through a moving medium, Martinus 
Hoek [55] and others [56,57,58,59] redesigned 
Fizeau’s experiment to utilize the speed of the 
Earth moving around the sun. Hoek designed an 
interferometer in which light passed through water 
in one arm and through air in the other (Fig. 8). In 
this way, light traveling in one direction around the 
interferometer propagated through the water 
parallel to the motion of the water around the sun 
and light traveling in the opposite direction 
propagated antiparallel to the motion of the water 
around the sun. After finding that the light 
propagated through the water parallel to the 
velocity of the Earth at the same speed that it 
propagated through the water antiparallel to the 
velocity of the moving Earth, Hoek calculated the 
function  that would compensate for the velocity 
of the water through the stationary aether and thus 
explain the vanishing optical path difference 
between the light propagating in the two directions. 
Again, the function  necessary to give the null 
result in Hoek’s experiment was identical to 
Fresnel’s drag coefficient, further supporting the 
significance of the Fresnel drag coefficient in 
understanding the composition of velocities in 
investigations concerning the optics of moving 
media. 
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Fig.8. Optical set up of Hoek’s experiment on the optics 
of moving media. L1 and L2 are conversing lenses; H, 
half-silvered mirror; M, mirror; m, microscope with 
micrometer.  
 

Hoek calculated the function 
that the time required for light to pass through the 
air in the interferometer arm parallel and 
antiparallel to the movement of the Earth would be 
given by 


 and 


 respectively; and that the

time required for light to pass through the water
the interferometer arm parallel and antiparallel to 
the movement of the Earth would be given by 






 and 




 

Consequently, the observed null result would be
described by the following Equation
 




 + 




 = 


 + 




 
Putting the denominators in a form read
simplification using a Taylor expansion
 




 + 


 


 

 = 


 + 

 

Since  


   when x is small and 
neglect terms of second and higher orders
Taylor expansion, we get: 
 

  



 + 

 












  



 + 



 
After cancelling like terms and rearranging, we get:
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Optical set up of Hoek’s experiment on the optics 
are conversing lenses; H, 

silvered mirror; M, mirror; m, microscope with 

 by assuming 
to pass through the 

in the interferometer arm parallel and 
antiparallel to the movement of the Earth would be 

respectively; and that the 
pass through the water in 

the interferometer arm parallel and antiparallel to 
the movement of the Earth would be given by 

 respectively. 

observed null result would be 
Equation: 


     (29) 

Putting the denominators in a form ready for 
using a Taylor expansion we get: 

+ 


 


 

 

(30) 

is small and if we 
neglect terms of second and higher orders from the 

 












 

(31) 

After cancelling like terms and rearranging, we get:




 - 
 


    
 









which can be more simply given as:
 


  


   


 )  



 ( 

After further simplification we get:
 






 )  



 (





 



   
 


 

 


 

 
 




     

 


        

 
which reduced to: 
 

  (1 - 

 )  

 
which is the Fresnel drag coefficient
Consequently, the formula for the composition of 
velocities was given by:  
 

w = 


 + u(1 - 

 ) 

 
According to Eqn. 39, 

moving through the water and the velocity of the 
moving water itself are not simply added as would 
be expected from velocity addition formula 
according to Galilean relativity
According to Galilean relativity, 
routinely used at a precision limited to the first 
order with respect to velocity, 
have been described by the follow
 

w = 


 + u  
 
which would have implied that 
equal to one, and that the effec
the water would have been
refractive index of the medium. 
relativity was limited in describ
experimental results obtained from investigating 
the optics of moving media. Once it was 
recognized that light waves were electromagnetic 
and described by Maxwell’s wave 
arose to find the correct transformation 
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




 - 
 














     (32) 

which can be more simply given as: 





 




   




 




) 

(33) 
After further simplification we get: 

 



)      (34) 

      (35) 

      (36) 

      (37) 

      (38) 

the Fresnel drag coefficient. 
la for the composition of 

      (39) 

 the velocity of light 
through the water and the velocity of the 

are not simply added as would 
velocity addition formula 

according to Galilean relativity [27,60-62]. 
According to Galilean relativity, which was 
routinely used at a precision limited to the first 
order with respect to velocity, the results would 
have been described by the following equation: 

      (40) 

that   would have been 
the effect of the motion of 

the water would have been independent of the 
refractive index of the medium. Clearly Galilean 
relativity was limited in describing the 
experimental results obtained from investigating 

of moving media. Once it was 
recognized that light waves were electromagnetic 

ed by Maxwell’s wave equation, a need 
transformation equations 
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that connected Fresnel’s drag coefficient, which 
was formulated for matter moving through a 
stationary aether as it pulls its excess aether along 
with it, with Maxwell’s wave equation, which was 
formulated for matter that was at rest with respect 
to a stationary aether. Through a series of 
investigations, Hendrik Lorentz, who greatly 
admired the work of Fresnel and Maxwell [63,64], 
set out to find the transformation equations 
necessary for describing correctly the optics and 
electrodynamics of moving bodies [65-75]. Lorentz 
based his work on an assumption of a stationary 
aether and proposed that Fresnel’s drag coefficient 
could be understood if it were the waves, as 
opposed to the aether, that were dragged by moving 
media. 

According to the electromagnetic wave theory 
of light, transparent media were considered to be 
non-conducting dielectrics and Lorentz assumed 
that the optical and electrodynamic effects that 
were observed in moving transparent, dielectric 
media were mediated by the bound charged 
particles that composed them. A force exerted on a 
bound charged particle by the aether would cause 
the particle to vibrate. Such a vibration would set 
up a secondary vibration in the aether that would 
then affect the adjacent charged particles. Since a 
force transmitted by the aether is not instantaneous 
and it takes time for a charged particle to accelerate 
as a result of the force before it re-radiates the force 
to the aether, various times must be introduced into 
the equations to determine the value of the force—
for example, the time the force is measured and the 
earlier time the force originated. Lorentz referred to 
the various times as local times and he considered 
the local times, not as true times, but only as an aid 
to the calculation (mathematische Hilfsmittel) of 
events that were not simultaneous. Lorentz initially 
related the local times with a transformation that 
was accurate to the first order. Although Lorentz 
introduced local times in order to describe events 
that were not simultaneous, he did not relate his 
local times to the retarded times introduced by 
Bernhard Riemann, Franz Neumann, Ludvig 
Lorenz, Alfred Liénard and Emil Wiechert and 
disregarded by James Clerk Maxwell [23,76-89]. 
Nevertheless, Lorentz’s local times are reminiscent 
of retarded times and remind us of the two instants 
in time involved in the emission of light from an 
object and the production of an image. The formal 
distinction however between retarded time and 
local time is that retarded time has a directional 
component whereas local time does not. The tacit 
assumption that had been used in characterizing the 
optics of moving media by Fresnel, who took into 

consideration reference frames in which the image 
would be formed either sequentially or 
simultaneously with the emission of the image-
forming light, was made explicit for describing the 
electrodynamics of moving bodies by formally 
introducing retarded and local times.  

Lorentz’s equations were particularly useful for 
relating the optical and electromagnetic equations 
applicable to presumed instantaneous and 
simultaneous events in the stationary aether to the 
sequential optical and electromagnetic events 
observed on Earth as it was moving through the 
stationary aether with a velocity of 30 


. 

Lorentz’s use of local times merely facilitated the 
physical and mathematical characterization of a 
real object moving through the aether by 
introducing a factitious object, stationary with 
respect to the aether and subject to Maxwell’s 
Equations. The local times were not meant to have 
any physical significance. Nevertheless, the 
introduction of local times allowed Lorentz to 
develop the equations necessary to relate 
Maxwell’s Equations for stationary bodies with the 
Fresnel drag coefficient. These equations, which 
are universally known as the Lorentz 
transformation equations, were able to explain 
observations and experiments on the optics and 
electrodynamics of moving bodies, including 
stellar aberration, Fizeau’s experiment, and most 
notably, the Michelson-Morley experiment. 
However, mechanistically, according to Lorentz, 
the Fresnel drag coefficient described the effect of 
the movement of charged particles being carried by 
the dielectric on the incoming and outgoing waves 
in the stationary aether and not the amount of 
excess aether being dragged by the dielectric 
moving through a stationary aether. 

While Lorentz considered the local times to be 
nothing but a mathematical tool and distinct from 
true, general or absolute time, Albert Einstein 
interpreted the local times as being the true time for 
each observer traveling at a given velocity relative 
to the observed system. Consequently, the 
reckoning of simultaneity became de facto a 
function of velocity and thus relative. Pari passu, 
the proper frame of reference, where events were 
considered to be simultaneous, switched from the 
stationary aether, inhabited by an imaginary 
observer who was all seeing, to the reference frame 
of a body whose relative velocity (u) vanished. 
Said another way, the moving body in which u was 
reckoned to be zero, became equivalent to the 
stationary frame. After Einstein’s [90] publication 
of the Special Theory of Relativity, in which he 
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presented an alternative to Galilean relativity and a 
new formula for the addition of velocities, Max von 
Laue [91] reinterpreted the Fresnel drag coefficient 
in terms of Einstein’s formula for the relativistic 
addition of velocities based on the Special Theory 
of Relativity and the Lorentz transformation 
equations. Since the Special Theory of Relativity 
was based on postulates that did not require an 
aether, Einstein and von Laue freed scientists to 
think about the velocity addition formula without 
the need to consider the aether with its inextricable 
morass of contradictory requirements. Von Laue’s 
interpretation of the Fresnel drag coefficient 
became standard physics [92-106]. 

Von Laue [91] derived the Fresnel drag 
coefficient from the Lorentz transformation 
equations for space and time. Assume that the light 
is propagating parallel to the x-axis through a 
transparent medium moving at velocity (u) parallel 
to the x-axis. Then the Lorentz transformation 
equations for comparing space and time in one 
inertial frame (x,y,z,t) compared with another 
(x’,y’,z’,t’) are given by: 
 

            (41) 
 
         (42) 
 
          (43) 
 

     



      (44) 

 
The relativistic velocity addition law for an 

observer at rest with the laboratory frame follows 
by taking the derivative of Eqn. 41 with respect to 
t, where the primed inertial frame is the inertial 
frame of the moving water: 
 

  

  







  


     (45) 

 
Differentiating Eqn. 44 with respect to , we get: 
 




    





      (46) 

 
After inverting Eqn. 46, we get: 
 




  

 



      (47) 

 
Substituting Eqn. 47 into Eqn. 45 and writing 




, the velocity of light propagating through the 

water as reckoned by an observer in the inertial 
frame of the water, as  , we get 
 

   
 





       (48) 

 
Letting   




, Eqn. 48 becomes: 
 

  




 
       (49) 

 
After rearranging Eqn. 49, we get: 
 

  

 


   





        (50) 
 

After expanding   




 with a Taylor 
expansion and neglecting terms that are second and 
higher orders with respect to 


, we get: 

 
  


 


   


      (51) 

 
After multiplying the terms in parentheses, we get: 
 

  

 


 







     (52) 
 
After we again neglect any terms that are second 
order with respect to 


, we get: 

 
  


 


 


      (53) 

 
Multiply through by 


 

 
   


   


      (54) 

 
Associate the terms that contain : 
 

  

   


      (55) 

 
After factoring out , we get: 
 

  

    


      (56) 

 
and we have recovered the Fresnel drag coefficient 
by assuming that space and time are relative 
quantities consistent with the Special Theory of 
Relativity. Von Laue’s derivation from the Lorentz 
transformation equations, as derived by Einstein 
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after taking into consideration the postulates that 
form the Special Theory of Relativity, indicates 
that the Fresnel drag coefficient can be divorced 
from dynamical mechanisms and viewed strictly in 
terms of relativistic space-time kinematics. 
According to French [100], “We have learned also 
(thanks largely to Einstein) that we should focus on 
the bare facts of observation, and should not, 
through our adherence to a particular theory, read 
more into them than is there.” This is sound 
scientific advice and consequently, we will not 
discuss the relativistic phenomena and the velocity 
addition law in terms of gedanken experiments 
involving space travelers [107,108] and train 
travelers [109], but only in terms of tested and 
testable phenomena. Forthwith we refer primarily 
to the Fizeau experiment and its replicates. 

2.     Results and Discussion 

In a previous paper published in this journal [110], 
one of us developed a new relativistic wave 
equation, based on the primacy of the Doppler 
effect that considers the propagation of light 
between a source and an observer in different 
inertial frames:  
 




  






     (57) 

 
where  is the angle between the velocity vector 
and the angular wave vector pointing from the 
source to the observer. When the velocities of the 
observer and the angular wave vector tend to be 
parallel,    < 0 and when the velocities of the 
observer and the angular wave vector tend to be 
antiparallel,   > 0. The above equation only 
admits the relative velocity (u) between the source 
and the observer and does not admit the 
introduction of any velocity relative to a 
nonexistent aether. This relativistic wave equation, 
which is form-invariant to the second order in all 
inertial frames, is the equation of motion that 
describes the properties of light traveling through 
the vacuum and reckoned by an observer in an 
inertial frame moving at velocity u relative to the 
inertial frame of the light source. 

This equation is an alternative to Maxwell’s 
wave equation which was developed to describe the 
propagation of light through a stationary aether in 
the absence of a source. Eqn. 57 was also 
developed independently of the Lorentz 
transformation equations. Eqn. 57 can account for 
the relativity of simultaneity [110] and the 

observation that the motion of charged particles 
cannot exceed the speed of light [111,112] without 
introducing the relativity of space and time. In this 
paper, we present a generalization of the relativistic 
Doppler wave equation in order to explain Fizeau’s 
experimental results concerning the propagation of 
light through moving transparent media. 

Eqn. 57 can be considered as a special case 
where the refractive index () is unity for light that 
travels through the vacuum and  




 = 


. Eqn. 
57 can be generalized for light moving from a 
source in the vacuum (air) and then through any 
transparent non-conducting, dielectric medium by 
explicitly including the refractive index of the 
dielectric medium through which the light 
propagates on its way from a source in air to an 
observer in air3. Letting  represent the angular 
wave number of the light in the medium, we get: 
 

  



  




 

     (58) 

 

 is not included in the Doppler term (




) 

since the movement (u) of the dielectric medium is 
limited by the speed of light in the vacuum and not 
by the speed of light in the transparent medium. A 
transparent medium moving at a velocity greater 
than the speed of light in the transparent medium 
would produce a Mach cone [113] as is seen with 
Cherenkov radiation [114]. Thus  puts a brake on 
the speed of light in a medium while c puts a break 
on the speed of the medium. 

The following equation is a general plane wave 
solution to the generalized second order relativistic 
wave equation given above for the wave in a 
medium with refractive index :  

 = o
!

 

 


 
(59) 

 
The general plane wave solution assumes that 

the direction of r, which extends from the source to 
the observer, is arbitrary but that ki-observer is parallel 
to r. Thus  is the angle between the velocity 
vector and the angular wave vector. We can obtain 
the form-invariant relativistic dispersion relation by 
 
3 The appendix describes a wave equation in which the 
light propagates from the source to the observer entirely 
through a single, homogenous and isotropic medium with 
a refractive index of .  
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substituting Eqn. 59 into Eqn. 58 and taking the 
spatial and temporal partial derivatives: 
 






 

 
       

=   
 
 

      (60) 

 
After canceling like terms, we get: 
 

= 



 
 

 
     (61) 

 
Since 


  =  , Eqn. 61 becomes: 

 

 = 
 

 
     (62) 

 
After abbreviating  by  , and since k = 



 , we can recast Eqn. 62 in terms of wavelength 
and we get: 
 




 = 


 
  

  
      (63) 

 

 = 



 
 

 
      (64) 

 
Eqn. 64 gives the Doppler-shifted wavelength 

() of light within a transparent, dielectric medium 
with refractive index  moving at velocity u 
relative to a source in the vacuum (air) with a 
vacuum wavelength of  . When the velocities 
of the observer and the angular wave vector tend to 
be parallel,    < 0 and when the velocities of 
the observer and the angular wave vector tend to be 
antiparallel,   > 0. 

In Fizeau’s experiment, the water and light 
moved either with (parallel to) or against 
(antiparallel to) each other making   =  
Thus for the two situations, Equation 64 becomes: 
 

 = 



 



     (65) 

for the parallel case (u    = -1) and 

 = 



 



     (66) 

for the antiparallel case (u > 0;   = +1), where  
 represents the wavelength of light 
propagating with (parallel to) the flow of water in 
the inertial frame at rest with respect to the moving 
water and  represents the wavelength 
of light propagating against (antiparallel to) the 
flow of water in the inertial frame at rest with 
respect to the moving water. The difference in the 
wavelengths of light traveling through the medium 
in the two directions is: 
 

  = 



  

 



-  




 


 
      (67) 

 
The refractive index  in the above equations 

refers to the refractive index of the medium 
through which the light propagates in between the 
source and the final observer, which are both in air. 
The above equation gives the difference in the 
Doppler shift for a single period of a wave train 
travelling with and against the flow of water. There 
are many periods within the tube of flowing 
medium and in order to calculate the optical path 
difference between the light waves traveling with 
(parallel to) and against (antiparallel to) the flow of 
water, we have to calculate the number of 
wavelengths (N; [115-117]) in the medium when u 
= 0.  Given that the optical path length (OPL, 
[118]) in the tubes is L, the wavelength of the 
source light is , and   , there 
are: 

 
   


 




 


         (68) 

 
waves in the tube. Thus the optical path lengths of 
the light propagating with (parallel to) and against 
(antiparallel to) the moving water in the tubes are: 
 

 =



 




 



= L 




 

(69) 
 

=



 







=  

 

L 



      (70) 
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And the optical path difference (OPD) between the 
two propagating beams is:  
 
     = 
 

 L 



- L 




     (71) 

 
Simplify by multiplying each term on the right by 

1, where 1 = 



 for the first term on the right 

and 



 for the second term on the right: 

 

  




 
-





 
         (72) 

 
and simplify so that the equation is accurate to the 
second order by applying a Taylor expansion: 
 

  





 
  


   




  


     (73) 

 
Since the speed of the water (u) is minuscule 

compared to the speed of light (c), then 



 and 

terms of higher orders ( 

) are much less than 

one. By eliminating the second-order and higher 
terms, we get:  
 

   

        (74) 

 
Equation 74 differs from both Fizeau’s equation 

that utilizes Fresnel’s partial drag coefficient 
equation and the equation of the Special Theory of 
Relativity based on the relativity of space and time 
[2]. Moreover, Eqn. 74 also differs from Eqn. 26, 
which is consistent with Galilean relativity. Note 
that the assumptions used to obtain Eqn. 74 are not 
valid at media velocities close to the speed of light, 
which would be difficult to produce in the 
laboratory. If such high velocities were attainable, 
the higher order terms would have to be used. 
Using the simplified equation that applies when u 
<< c, the fringe shift (FS), which is defined as  



 , is given by: 

 

FS   


       (75) 
 
The fringe shift is proportional to the velocity of 
the water and the fringe shift vanishes when u 
vanishes.  

In Eqn. 75, which is based on the primacy of 
the Doppler effect, the fringe shift is predicted to 
be independent of the refractive index. This 
contrasts with predictions made by Fizeau’s 
equation, which directly utilizes the Fresnel drag 
coefficient, and the Special Theory of Relativity, 
which states how taking account of the relativity of 
space and time leads to the Fresnel drag coefficient 
used in Fizeau’s equation [2]. Eqn. 75 also differs 
from Eqn. 26, which was derived using Stokes’ 
assumption of complete aether drag. Mirabilis 
dictu, Table 1 shows that the new relativistic 
Doppler equation is more accurate than the Fresnel 
drag coefficient equation and the Special Theory of 
Relativity in describing the results of experiments 
performed by Fizeau [39], Michelson and Morley 
[40], and Zeeman [44].  
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Table 1: A Meta-Analysis of the Experimental and Theoretical Values Obtained for the Effect of a Moving 
Medium on the Speed of Light Given in Fractions of a Wavelength. 
 
Length 
(L, in 
m) 

Velocity     
(u, in 
m/s) 

Wavelength 
(, in 
nm) 

Experimental 
Results 
(Double 
Displacement, 
FS) 

Theoretical 
(Fresnel 
Drag 
Coefficient) 

Difference 
Exp –
Theor 

Theoretical 
(Rel 
Doppler 
Effect)  

Difference 
Exp –
Theor 

Reference 

2.9750 7.059 526 0.4602 0.414 0.046 0.533 -0.073 39 
10 1 570 0.184 0.182 0.003 0.234 -0.050 40 
6.04 4.65 450 0.826 0.647 0.179 0.833 -0.007 44 
6.04 4.65 458 0.808 0.636 0.172 0.818 -0.010 44 
6.04 4.65 546.1 0.656 0.533 0.123 0.686 -0.030 44 
6.04 4.65 644 0.542 0.452 0.090 0.582 -0.040 44 
6.04 4.65 687 0.511 0.424 0.087 0.545 -0.034 44 

      = 
+0.100 

  = -0.035  

     SD = 
0.064 

 SD = 
0.023 

 

 
 
FS = number of fringes in the fringe shift that result 
from a double displacement (water flowing one 
way- water flowing the other way). The Special 
Theory of Relativity and the Fresnel drag 
coefficient equation for a double displacement is: 
FS = 




(1 - 


), while the relativistic Doppler 

effect equation for a double displacement is: FS 
= 


  A statistical analysis of the differences 
between results of experiments and the two theories 
using a one-tailed t-test for two samples with 
unequal variances shows that the values given by 
the new relativistic Doppler effect equation are 
significantly more accurate than the values given 
by the Fresnel drag coefficient equation and the 
Special Theory of Relativity (t = 5.2617,  = 
0.0005, n = 7). 

In his book entitled, Relativity. The Special and 
the General Theory, Einstein [2] wrote that the 
Fizeau experiment “decides in favour of [the 
velocity addition law] derived from the theory of 
relativity, and the agreement is, indeed, very exact. 
According to recent and most excellent 
measurements by Zeeman, the influence of the 
velocity of flow v on the propagation of light is 
represented by [the velocity addition law] to within 
one per cent.” The fact that the new relativistic 
Doppler effect describes and explains the results of 
the Fizeau experiment with more than twice the 
accuracy of the velocity addition law based on the 
Special Theory of Relativity is not inconsequential. 

In Fizeau’s equation, the velocity is relative to 
the laboratory observer. The fact that any velocity 

relative to the aether has no place in his equation 
nor in Eqn. 75, emphasizes that there should be no 
need to compensate for the movement of a 
transparent dielectric medium through the aether 
with Fresnel’s drag coefficient, which requires the 
refractive index.  Using Eqn. 75 to model Hoek’s 
experiment, there should also be no need to 
compensate for the movement through the aether 
since all the components are stationary in the 
laboratory frame and consequently, u vanishes. 
Given that u vanishes, there should be no fringe 
shift and the null result is explained without the 
need for the Fresnel drag coefficient. Indeed, the 
aether is superfluous when considering the optics 
of moving media, and there is no need to consider 
it as a necessary reference frame for optical 
experiments. 

Given that visible light will only be able to 
interact with the electrons in the flowing dielectric 
medium, Eqn. 75 will only hold when there are 
sufficient electrons in the dielectric medium to 
interact with all of the propagating photons in the 
tube. The number of photons in the tube can be 
estimated with the following equation that is based 
on dimensional analysis: 
 

number of photons in tube = PFR(


)     (76) 
 

where PFR is the photon fluence rate (in 


), L 
is the length of the two tubes, A is the cross 
sectional area of the tube, and c is the speed of 
light. The number of electrons can be estimated 
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from the following equation, which is based on 
dimensional analysis: 
 

number of electrons in tube =  


(

)     (77) 

 
where  is the density of the fluid in the tube, L is 
the length of the two tubes, A is the cross sectional 
area of the tube, mb is the average mass of a baryon, 
and (


) is the electron to baryon ratio ( atomic 

number to atomic mass ratio) of the fluid in the 
tube. Consequently, Eqn. 75 is applicable when 
 

 


(

)  > PFR(


)      (78) 

 
Maxwell’s relation states that the square of the 

refractive index is approximately equal to the 
dielectric constant, which is a measure of the 
concentration of electrons in a dielectric. This 
indicates that Eqn. 75 may not apply to gases with 
refractive indices close to unity. In Equation 75 as 
well as all the equations that lead up to Eqn. 75, we 
must use the refractive index of the material taking 
into consideration the temperature in which the 
experiment is done and the wavelength of the 
source. 

As a result of the Doppler shift, the light that 
emerges from the water moving in the two 
directions will have slightly different wavelengths. 
We can model the interference of these two 
coherent light waves with slightly different 
wavelengths from the way they will produce beats 
[117]. The amplitude () of the resultant wave will 
be the sum of the two interfering waves: 
 

  



 





      (79) 

 
For convenience, let  =


 




 


) and  =

 




 


), then 

 
          (80) 

 
The intensity (I) of the resultant wave is equal to 
the square of its amplitude: 
 

    
         (81) 

 

And since   is so slowly varying, we can 
consider it to be a constant, and Equation 81 
becomes: 
 

          (82) 
 

which for small wavelength shifts will be observed 
as: 
 

   

 


  


  

(83) 
 

which can be distinguished from the situation 
where u = 0: 
 

    


      (84) 

 
While in the interview with Shankland [1] cited 

above, Einstein stated that the Michelson-Morley 
[119] experiment had no influence on his 
development of the Special Theory of Relativity, 
pedagogically and historically, the Michelson-
Morley experiment has been very important in 
discussions of the Special Theory of Relativity 
[120-144]. For this reason, we show that the new 
relativistic wave equation, based on the primacy of 
the Doppler effect, also predicts the null effect 
observed by Michelson and Morley. According to 
Eqn. 64, the fringe shift should vanish when there 
is no aether and the relative velocity between the 
two light waves propagating in different directions 
vanishes: 
 

    = L 
 

 
 


 

 
- L 

 



- L 
  

  
 

(85) 
 

In order to describe the geometry of the 
Michelson-Morley experiment, let  =  for the 
first term on the right-hand side, let  = 0 for the 
second term on the right-hand side, let  = 


 for the 

third term on the right-hand side, and let  = 


 for 
the last term on the right-hand side. After 
calculating the cosines, Eqn. 85 becomes:
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  = 
 

                 L 



 




-   L 



 
Simplify by multiplying the first two terms on the 

right-hand side by 1, where 1 = 




term and 



 for the second term:

 
    

 

                   L 




 
 






-  

Simplify to get:  
 

   
 





 
-   2L   

 
Since the velocity of the source 
velocity of the interferometer and the 
vanishes, u = 0, and Eqn. 88 becomes:
 

   
 

-   2L = 0   
 
And when the OPD vanishes, the fringe sh
vanishes:  
 

FS  


= 0 

Thus the new relativistic wave 
on the primacy of the Doppler effect is consistent 
with the null result for the Michelson
experiment since Eqn. 90 holds true 
of the orientation or length of the interferometer 
arms, and the time during the day or during the 
year when the measurements are taken.

Experiments concerning the optics of 
crystalline and noncrystalline materials 
motion neither induces birefringence (
nordinary) in a material with a single refractive index 
[145-147] nor influences the intrinsic birefringence 
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

-  L 


 

(86) 

Simplify by multiplying the first two terms on the 



 for the first 

for the second term: 

  

   L 

-  L 


 

(87) 
 

   

     (88) 

source relative to the 
interferometer and the observer 

88 becomes: 

   

     (89) 

hen the OPD vanishes, the fringe shift also 

     (90) 
 

wave equation based 
of the Doppler effect is consistent 
result for the Michelson-Morley 

true independently 
of the orientation or length of the interferometer 

the time during the day or during the 
taken. 

concerning the optics of 
crystalline and noncrystalline materials show that 

efringence (nextraordinary – 
) in a material with a single refractive index 

the intrinsic birefringence 

of a crystal such as calcite or quartz. The lack of 
effect of motion on birefringence 
consistent with the new relativistic wave 
based on the primacy of the Doppler effect
which the motion-dependent 
equals unity because the effect 
single wavelength is inversely proportional to the 
refractive index (Eqn. 64) while th
wavelengths affected by motion 
the refractive index (Eqn. 68)

We began this paper discussing the aberration 
of starlight and will now return to it
Theory of Relativity explains the 
starlight in terms of the relativity of space and time
[90,100,149].  If the star and the observer on Earth 
were stationary, then the components of the 
velocity of the light in the x 
be given by: 
 

     
 

       
 
where the light propagates along its wave vector 
with velocity c (Figure 9). 

 
Fig.9. The aberration of starlight
Special Theory of Relativity, 
invariant. However, as a consequence of the relati
space and time, the components of the speed of light 
depend on the relative velocity of the star and the 
observer. a) u = 0; b) u  0. 
 

Since the relative velocity of the star and the 
Earth is u, according to the Special Theory of 
Relativity, the components of the velocity (
light in the moving frame of the Earth 
determined by using the Lorentz transformation 
equations given in Eqns. 41,
transposing the primed and unprimed quantities 
and after replacing u with -u:
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of a crystal such as calcite or quartz. The lack of 
effect of motion on birefringence [148] is also 

new relativistic wave equation 
macy of the Doppler effect in 

dependent refractive index 
effect of motion on a 

is inversely proportional to the 
64) while the number of 

by motion is proportional to 
68).  

We began this paper discussing the aberration 
ht and will now return to it. The Special 

Theory of Relativity explains the aberration of 
rms of the relativity of space and time 
.  If the star and the observer on Earth 

the components of the 
 and y directions would 

      (91) 

      (92) 

here the light propagates along its wave vector 

 

The aberration of starlight. According to the 
, the speed of light is 

as a consequence of the relativity of 
space and time, the components of the speed of light 
depend on the relative velocity of the star and the 

ince the relative velocity of the star and the 
according to the Special Theory of 

omponents of the velocity () of 
light in the moving frame of the Earth can be 

the Lorentz transformation 
41, 42, 43, and 44 after 

transposing the primed and unprimed quantities 
: 
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     


   
 

     (93) 

 

    




    

  
     (94) 

 
Again, the observer on Earth reckons that the 

light propagates along its wave vector with velocity 
c even though the components of the velocity of 
light are different for the moving observer and the 
stationary observer. For the observer on Earth, who 
according to the Special Theory of Relativity 
reckons that the vertical and horizontal components 
of the velocity of light are not equal, the apparent 
angle () of the star relative to the ecliptic will be: 
 

 = -



 = 


 

       (95) 

 
Simplify Eqn. 95 by performing a Taylor 
expansion and by neglecting terms that are second 
or higher order with respect to 


: 

 
   (  


  


 =  

  

  -  

 


 - 
 


  = 

  

  -  

 


       (96) 
 
Simplify Eqn. 96 using the identity:   = 1 - 
 
 
      


       (97) 

 
Define the angle of aberration () as the 

difference in the angle (), which would be 
reckoned if the relative tangential velocity between 
the Earth and the star vanished, and the angle (), 
which is reckoned when there is a relative 
tangential velocity between the star and the Earth 
moving along the ecliptic: 
 

          (98) 
 

After rearranging Eqn. 98, and using the 
trigonometric subtraction formula: cos (x – y) = cos 
(x) cos (y) + sin (x) sin (y), we get: 
 

            
       

(99) 
 
Since   is very small,    and    , 
and Eqn. 99 becomes: 

          (100) 
 
Substituting Eqn. 100 into Eqn. 97, we get: 
 
        


  

(101) 
After canceling and  , we get: 
 

  

 (     (102) 

 
After canceling we get: 
 

  

       (103) 

 
For the case where the position of the star 

would be over head for a stationary observer 
(   


 and  = 1), the observed angle of 

aberration for an observer on Earth moving relative 
to the star would be given by Eqn. 104: 
 

  

       (104) 

 
which gives the actual angle of aberration observed 
by Bradley. Thus stellar aberration can be 
explained by the velocity-dependent differences in 
the x and y coordinates of space-time posited by the 
Special Theory of Relativity. 

By contrast with the Special Theory of 
Relativity, which explains stellar aberration on the 
basis of the relativity of space and time, the 
observed angle of aberration can also be explained 
by the new relativistic wave equation, which is 
based on the primacy of the Doppler effect [110]. If 
the new relativistic Doppler effect is the basis of 
stellar aberration, then we should be able to use the 
new relativistic Doppler effect to compute the 
angle of aberration simply and directly, and show 
its dependence on the relative velocity u and the 
angle of observation . Indeed the angle of 
aberration can be obtained simply by taking the 
angular derivative of the new relativistic Doppler 
effect coefficient: 
 

 = 


 

  
     (105) 

 
Simplify: 

 = 


  


 
 

     (106) 
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After performing a Taylor expansion and 
neglecting terms higher than the second order with 
respect to 


, we get: 

 

    


  


  
  


    (107) 

 
    


  




  


 
  


  
(108) 

 
After taking the derivative, we get: 
 

     


  
  


 

   


 
(109) 

 
After neglecting terms that are second order or 
higher with respect to 


, we get: 

 
     


     (110) 

 
For the case where the position of the star is 

nearly overhead,   1, and the observed angle 
of aberration for an observer on Earth moving 
relative to the star would be given by: 
 

  

      (111) 

 
The relationship between the “past” position of 

the star and the “present” position of the star can be 
deduced from the new relativistic Doppler effect by 
making use of the Principle of Least Time, which 
was developed by Pierre de Fermat in his quest to 
understand the refraction of light in transparent 
media [150,151]. René Descartes, in his Optics 
published in 1637, developed the law of refraction 
by postulating that light moved from point to point 
in an instant, no matter what the distance between 
the points, and that the refraction of light by a 
transparent medium was a consequence of the 
relative resistance to light of the incident and 
transmitting media. Descartes considered the 
harder transparent medium to exert less resistance 
to the component of light perpendicular to the 
interface than the softer air, just as a ball would 
experience less resistance when rolled across a hard 
table than it would when rolled with the same force 
across a soft carpet [152]. In contrast to Descartes’ 
theory of the instantaneous transmission of light, 
Ole Roemer proposed that the variations in the 
timing of the eclipses of the moons of Jupiter 
would be intelligible if light traveled with a finite 
velocity [153]. The conundrum of the two opposing 

views of the speed of light is evident in Definition 
II of Newton’s Opticks [154], in which he 
considered the two mutually-exclusive possibilities 
that light propagated instantaneously and that light 
propagated in time. Indeed during the seventeenth 
century, there were no compelling experimental 
results that could be used to decide whether the 
speed of light should be treated as infinitely fast so 
that an image would be formed instantaneously and 
simultaneously by a source, or whether the speed of 
light should be considered to propagate from 
source to observer in a finite and progressive 
manner so that an image will be formed after the 
source emits the light.  

Going against Descartes himself, Pierre de 
Fermat, not only considered the speed of light to be 
finite, but he used the finite speed of light in a 
given transparent medium ) as the basis of his 
Principle of Least Time to describe, explain, and 
predict the processes understood by geometrical 
optics, including reflection and refraction, the very 
processes Descartes used to demonstrate the 
success of his Method. In order to describe or 
predict the position of an image using Fermat’s 
Principle, one must construct an integral for each 
possible ray that propagates over the distance (s) 
from the source to the observer: 
 

   



      (112) 

 
and then find the ray which takes the least time to 
propagate from the source to the observer. Fermat 
interpreted the transit time of light in terms of the 
index of refraction (ni), which he defined as the 
ratio of the velocity of light in a vacuum (c) to the 
velocity of light in a transparent material ).  
 

   



      (113) 

 
By eliminating the constant that represents the 

speed of light in a vacuum, the optical path length 
(OPL) can then be defined as: 
 

   

     (114) 

 
where  is the refractive index along an 
infinitesimal distance . 

Fermat’s Principle has been useful for 
understanding phenomena in geometrical optics 
[155-160] and has served as the basis of the 
Principle of Least Action in mechanics [161-164]. 

The phase of a ray of light is an outsider in 
geometrical optics, but if one considers the angular 
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wave vector to be equivalent to a light ray, then one 
can consider the duration of time it takes for light 
to get from the source to the observ
phase; and anything that affects the phase of the 
angular wave vector can be incorporated in the 
integral used to calculate the optical path length or 
the duration of time it takes for light to get from the 
source to the observer. The coefficient of the new 
relativistic Doppler effect describes the velocity 
and angular () dependence of the phase of the 
angular wave vector pointing from the source
 




 


  

 
where     


 when the angular wave vector 

and the relative velocity vector, both with their 
origins at the star, point more or less in the same 
direction, and      


 when the angular wave 

vector and the relative velocity vector, both with 
their origins at the star, point more or less in the 
opposite direction. 

Fig.10. Two observers are equidistant from a star. The 
total duration of time necessary for light to propagate 
from a star to the observers who are equidistant from the 
star and at rest with respect to the star is represented by a 
and a’, where a = a’. When the star is moving relative to 
the observer, the total duration of time necessary for light 
to propagate from the star to the observer is given by the 
difference vector (c) that represents the total
time. The magnitude of vector c has physical 
significance in that it represents the least time to get from 
the source to the observer, while the direction of vector c 
points from the observer to the predicted position of the 
star. If the “past” position of the star is known, the 
predicted position is the “present” position of the star, 
and if the “present” position of the star is know, the 
predicted position is the “past” position. 
 
 

Both the velocity-independent and the
dependent contribution to the total duration of 
it takes for the light to get from the source to the 
observer that are moving relative to each other at 
velocity () can be described and predicted 
by the following equation (Fig. 10): 
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to be equivalent to a light ray, then one 
time it takes for light 

to get from the source to the observer in terms of 
and anything that affects the phase of the 

angular wave vector can be incorporated in the 
optical path length or 

time it takes for light to get from the 
cient of the new 

istic Doppler effect describes the velocity () 
dependence of the phase of the 

from the source: 

   (115) 

when the angular wave vector 
and the relative velocity vector, both with their 
origins at the star, point more or less in the same 

when the angular wave 
vector and the relative velocity vector, both with 

e star, point more or less in the 

 
Two observers are equidistant from a star. The 

total duration of time necessary for light to propagate 
from a star to the observers who are equidistant from the 

o the star is represented by a 
and a’, where a = a’. When the star is moving relative to 
the observer, the total duration of time necessary for light 
to propagate from the star to the observer is given by the 

he total duration of 
. The magnitude of vector c has physical 

significance in that it represents the least time to get from 
the source to the observer, while the direction of vector c 
points from the observer to the predicted position of the 

” position of the star is known, the 
predicted position is the “present” position of the star, 
and if the “present” position of the star is know, the 
predicted position is the “past” position.  

independent and the velocity-
duration of time 

m the source to the 
are moving relative to each other at 

) can be described and predicted exactly 
:  



 







 

 

where s is the distance betwee
observer in the static, velocity
the initial time. In order to an
velocity-dependent component to the duration, we 
will subtract the static, 
component from the total duration
 

   





 





 
Since stellar aberration is a first

phenomenon, we can obtain a first
by reducing the exact solution given above by
performing a Taylor expansion and neglecting 
terms that are higher than second order with respect 
to 


. After doing so, we get: 

 
   





  


  -  

 
After multiplying terms, we get:
 
   



 

  


  -  

 
   





  


  - 

 
After neglecting terms that are second order or 
higher with respect to 


, we get:

 
   


 








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  

 
  


 

(116) 
 

is the distance between the source and the 
, velocity-independent case at 

In order to analyze just the 
dependent component to the duration, we 

static, velocity-independent 
component from the total duration: 







  


 - 



 

(117) 

Since stellar aberration is a first-order 
phenomenon, we can obtain a first-order equation 
by reducing the exact solution given above by 
performing a Taylor expansion and neglecting 

t are higher than second order with respect 
 

  


  

 



  

 (118) 

er multiplying terms, we get: 

  


   




 



  

(119) 

 


   




 



  

(120) 

eglecting terms that are second order or 
e get: 



   


  –  


  

(121) 
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After removing the terms that are independent of  
from  

   
     


 

  -  
 


  




 

(122) 
 
After integrating with respect to , we get (within a 
constant of integration): 
 
   


 + 


  


 - 


 =   


 

(123) 
 

After evaluating the velocity-dependent term 
for the light propagating in the direction of the 
observer     


 ), we see that the duration of 

time it takes for light to go from a source to an 
observer decreases by 


 compared to when the two 

are static: 
 

     


 


  = -


   (124) 

 
By contrast, when evaluating the velocity-

dependent term for the light propagating in the 
direction away from the observer     


 ), 

we see that the duration of time it takes for light to 
go from a source to an observer increases by 


 

compared to when the two are static: 
 

     


 


 = 


    (125) 

 
Eqns. 124 and 125 give the errors encountered 

when one assumes that the distance between the 
source and the observer is minimal and/or the 
velocity is so small that the moving system can be 
modeled as a static system. The angles that give the 
minimal or maximal velocity-dependent change in 
the duration of time can be conveniently 
determined by finding the stationary values of the 
duration obtained from Eqn. 123: 
 




 
 


 =  


                 (126) 

 
The stationary values of the velocity-dependent 
change in duration occur when  equals either 0 or 
. By taking the derivative of Eqn. 126, we get: 
 




    


    (127) 
 
We will see that, depending on our definition of u, 
the duration of time required for light to get from 
the source to the observer moving relative to each 
other is minimized by taking the path where  =  
or  = 0. 

In order to see how Fermat’s Principle helps to 
understand the contribution of the new relativistic 
Doppler effect to stellar aberration, we will show 
two ways in which the first-order velocity-
dependent contribution to the duration of time it 
takes light to propagate from the star to the 
observer can be subtracted from the duration of 
time calculated under the assumption of stasis. We 
will do this by positioning the star and the observer 
two different ways in Cartesian coordinate systems. 
The first way takes advantage of Richard 
Feynman’s [165] method of reversing the direction 
of time by starting with the star in the “present” 
position and then following it as it moves backward 
in time to its “past” position. The second and more 
traditional way starts with the star in the “past” 
position and then follows it as it progresses forward 
in time to the “present” position. According to 
Percy Bridgman [166],“Assuming now that we 
have our self-contained system of events [the star 
emitting light and moving relative to an observer 
absorbing light], we must inquire in detail by what 
method we assign coordinates to them. This method 
involves some sort of physical procedure; 
eventually it must be such that it will give us 
coordinates in both the stationary and the moving 
frames of reference. But before we have two 
coordinate systems we must have one, and issues 
arise in connection with a single frame of reference 
which must be solved before we can pass to two.”  

Consider the static situation where there is no 
movement (u = 0) and where the star occupies a 
position in the “present” at the instant when the 
image is seen by an observer. As long as u = 0, the 
light emitted by the star can be represented by 
spherical  and  concentric  wave  fronts (Fig. 11). 
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Fig.11. Spherical wave fronts emanating from
occupying the “present” position when u
realized centuries ago, the assumption that a moving 
system can be accurately modeled as a static system is 
equivalent to assuming that the forces or corpuscles 
propagate from the source infinitely fast [21]
instantaneous transmission of force is equi
action at a distance. 

 
An arc of each wave front is perpendicular to the 
angular wave vector denoted by the solid
this wave vector describes the path that takes the 
least duration of time for light to travel from the 
source to the observer in a static situation. 
make the model more realistic by taking into 
consideration both the duration of time predicted 
for the static situation and the diminution 
duration of time that results from the new 
relativistic Doppler effect that occurs when there is 
relative motion between the source and the 
observer.  

Assuming that the system is static and the star 
in the “present” position (B) at angle 
the horizontal axis the instant the image is formed, 
we can then retrodict the past by introducing a 
velocity-dependent term. We do this graphically by 
drawing the star in the “present” position 
surrounded by concentric spheroidal waves as 
described by the new relativistic Doppler effect. 
The relative velocity of the star has the effect of 
retarding the phase of the waves be
as shown in Fig. 12. A star that is moving forward 
in time with velocity u such that the least time 
occurs when angle  equals can be considered to 
be a star moving backward in time at velocity 
where the least time occurs at the angle where  
vanishes. The least time for the velocity
duration is subtracted from the static duration as if 
they were vectors to get a difference vector. This 
velocity-dependent time correction, or 
Dopplerization, which results from the new 
relativistic Doppler effect, is approximately 
equivalent to replacing the present time with the 
retarded time [77]. With an accuracy to the 
order, the difference vector points from the 
observer to the “past” position of the star.
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12. A star that is moving forward 
such that the least time 
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be a star moving backward in time at velocity –u 
where the least time occurs at the angle where   
vanishes. The least time for the velocity-dependent 
duration is subtracted from the static duration as if 

to get a difference vector. This 
dependent time correction, or 

Dopplerization, which results from the new 
relativistic Doppler effect, is approximately 
equivalent to replacing the present time with the 
retarded time [77]. With an accuracy to the first 
order, the difference vector points from the 
observer to the “past” position of the star. 

 
Fig.12.  is defined for a star moving west
time, or moving east, backwards in time
system centered on B, such that

West = , and South =    When 
the path of least duration of time. When 
represents the first order contribution to decreasing
duration of time it would take light to get from the source 
to the observer if the system were static. The 
represents the least duration of time is represented to
order by line c. Line c points from the observer in the 
present to the “past” position of the star.
and c shown in inset. 

 
Fig.13.  is defined for a star moving west
time, in a coordinate system centered on A, such that
East = 0, North = , West = , and South =  
0, line a represents the path of least duration of time. 
When u  0, line b represents the first order contribution 
to decreasing the duration of time it would take light to 
get from the source to the observer if the system were 
static. The path that represents the least duration of time 
in a moving system is represented to first order by line c. 
Line c points from the observer to the “present” position 
of the star at the instant the image
b and c shown in inset. 
 

We can also model stellar aberration by starting 
with the assumption that the system is static and the 
star in the “past” position (A) at angle 
the horizontal axis the instant the image
as shown in Fig. 13. We can then predict the 
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with the assumption that the system is static and the 
star in the “past” position (A) at angle  relative to 
the horizontal axis the instant the image is formed 

. We can then predict the 
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“present” position of the star by introducing a 
velocity-dependent term. We do this graphically by 
drawing the star in the “past” position surrounded 
by concentric spheroidal waves as described by the 
new relativistic Doppler effect. The relative 
velocity of the star has the effect of advancing the 
phase of the waves between A and B. The minimal 
stationary value for the velocity-dependent duration 
is subtracted from the static duration as if they were 
vectors to get a difference vector. This velocity-
dependent time correction, or Dopplerization [167], 
which results from the Doppler effect, is 
approximately equivalent to replacing the present 
time with the advanced time [168]. With an 
accuracy to the first order, the difference vector 
points from the observer to the “present” position 
of the star. The angle between line a and line c is 
equal to the angle of aberration and can be used to 
describe the “present” position of the star in the 
coordinate system of the actual observer, and the 
“true” position of a star in the standard coordinate 
system [169-172].  

We have analyzed the dynamic system by first 
considering the static situations where the position 
of the star is either in the “present” or the “past” 
position, and then we added a dynamic term that is 
first order with respect to 


. When starting from the 

“present” position, the least total time duration 
vector points to the “past” position of the star; and 
when starting from the “past” position, the least 
total time duration vector points to the “present” 
position of the star. We have made use of two 
situations to describe the stationary values of the 
durations that quantify the “past” position of a star 
when the “present” position is known and the 
“present” position of a star when the “past” 
position is known.  

We have provided an account of stellar 
aberration that incorporates the mathematical world 
as well as the physical world [173,174]. In doing so 
we hope that we have provided a mathematically 
and physically rigorous picture of how stellar 
aberration can be described and explained by the 
new relativistic Doppler effect. Paul Dirac [175] 
wrote that, “The main object of physical science is 
not the provision of pictures, but is the formulation 
of laws governing phenomena and the application 
of these laws to the discovery of new phenomena. If 
a picture exists, so much the better….” 

Inspired by the work of Bradley on aberration, 
Christian Doppler [176-178] proposed that, by 
necessity, relative motion must be taken into 
consideration in all wave phenomena. Although 
John Tyndall [179] ended his discussion of the 

Doppler effect by stating lukewarmly that, “The 
ingenuity of the theory is extreme, but its 
correctness is more than doubtful.” Indeed 
Hippolyte Fizeau and Ernst Mach [180-182] 
independently predicted that, when one looked at 
the displacement of spectral lines, the Doppler 
effect would be useful for determining the radial 
velocity of stars. Such an astronomical effect was 
discovered by Sir William Huggins [183-185] and 
later the same effect was discovered independently 
in terrestrial experiments by Johannes Stark and 
Antonino Lo Surdo [186,187]. The Doppler effect 
has proven to be more than fruitful in 
understanding phenomena ranging from the sound 
of a moving violin, to the motion of our solar 
system and galaxy toward the Virgo cluster of 
galaxies, to the expansion of the universe [188-
202]. We believe that the Doppler effect will be 
also useful for understanding stellar aberration and 
Fizeau’s experiment involving the propagation of 
light through moving water.  

Einstein [2,203,204] emphasized the 
importance of the Fizeau experiment for the 
development of the Special Theory of Relativity. 
Realizing the danger of emphasizing formal 
relationships at the expense of concrete physical 
reality, we propose that experimentalists could 
repeat the Fizeau experiment and extend it by using 
media with different refractive indices. The Special 
Theory of Relativity, which interprets the 
quantitative value of the Fresnel drag coefficient in 
terms of the “spatio-temporal behavior of systems 
inhabiting/carrying Minkowski space-time” [205], 
predicts that the fringe shift will be best described 
by the Fresnel coefficient, which is a function of 
the refractive index. On the other hand, the new 
relativistic wave equation based on the primacy of 
the Doppler effect, predicts a different relationship. 
One could compare the fringe shifts induced by 
media moving at a given velocity using methanol, 
which has a refractive index of 1.326  and xylene, 
which has a refractive index of 1.495 
[206,207,208,209]. Since (  - 1 = 
0.758276) and (  - 1 = 1.235025), the Special 
Theory of Relativity predicts that the fringe shift 
will be 1.6 times greater with xylene than 
methanol, while the relativistic Doppler equation 
predicts that there will be no difference.  

We have previously shown that the relativity of 
simultaneity and the fact that the velocity of 
charged particles cannot exceed the speed of light 
do not require the relativity of time posited by the 
Special Theory of Relativity for their explanation, 
but can also be explained in terms of the Doppler 
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effect. Here we add the observations on stellar 
aberration, the optics of moving media exemplified 
by the Fizeau experiment, and the Michelson-
Morley, experiment as additional phenomena that 
can be explained in terms of the new relativistic 
wave equation based on the primacy of the Doppler 
effect, without the need to introduce the velocity-
dependent relativity of space and time.  

Robert S. Shankland related the following 
thoughts to Loyd S. Swenson Jr. in an interview in 
August, 1974 [204]: 

“I think one of the reasons that Einstein was so 
taken with the Fizeau experiment was that it gave a 
number. You see, these null experiments, important 
as they are, are always subject to the question: 
Well, was there something missing in the 
experiment that didn’t reveal it? Michelson to the 
end of his days was worried about this point. But 
when you have a number, and the Fizeau 
experiment had a number—and another number 
that Einstein was so interested in was the 
aberration constant—those not only would be 
stimuli for a theory, but they would check against a 
theory in a way that a null experiment could not.”  

In light of these words, repeating the Fizeau 
experiment to test quantitatively the predictions of 
the Special Theory of Relativity versus those of the 
new relativistic wave equation based on the 
primacy of the Doppler effect is crucial. In 
addition, performing the Fizeau experiment with 
transparent, non-conducting, dielectric media with 
differing refractive indices allows for an additional 
stringent test of the primacy of the relativity of 
space and time versus the primacy of the new 
relativistic Doppler effect. Indeed, when discussing 
the Fizeau experiment, Wallace Kantor [210] 
wrote, “It is to be noted as Einstein has suggested 
that it takes but one experiment in kinematics on 
which dynamics is based to cause a revision of our 
current understanding and beliefs.”  

3.     Appendix 

Eqn. 58 can be written for the case where the light 
propagates from the source to the observer entirely 
through a single medium with a refractive index 
(. In order to transform Eqn. 58, which models 
light propagating through air and a transparent 
medium, we assume that the following conditions    
represent    the    properties    of    light  

perpendicular to an air-medium interface4:  
 

=       (A1) 
 
 

= 


     (A2) 
 
and replace c and 


 in Eqn. 58 with 


 = 

and  


 = , respectively, to get: 
 




 

 






    (A3) 

 
In a single transparent medium with refractive 

index , when u = 0, 





 



is 

equal to 



, and Eqn. A3 becomes: 

 



 


       (A4) 

 
and in a single transparent medium in which  = 1, 

when u = 0, 







 

=  and Eqn. 

A3 becomes: 
 




      (A5) 
 
which is the form of d’Alembert’s homogeneous 
equation obtained by Maxwell for waves 
propagating through the aether. The general plane 
wave solution to Eqn. A3 for the propagation of 
light from the source to the observer in the same 
medium is:  
 

 = o
!







 
(A6) 

 
After substituting Eqn. A6 into Eqn. A3 and 

taking the spatial and temporal partial derivatives, 
we get: 

 
4 By multiplying all terms in Eqns. A1 and A2 by , we 
see how energy (= ) and 
momentum (= 

) are conserved at 
an interface. 
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






  

=  
 

     

 (A7) 
 
After canceling like terms, we get: 
 



 =





    (A8) 

 
Since 


  = 


, Eqn. A8 becomes: 

 

 =


 

    (A9) 

 
We can recast Eqn. A9 in terms of wavelength: 
 

 =  
  

 
  (A10) 

 
The above equation gives the difference in the 

Doppler shift for a single period of a wave train 
travelling with and against the flow of the medium. 
There are many periods within the two tubes with a 
total length L containing the flowing medium and 
in order to calculate the optical path difference 
between the light waves traveling with (parallel to) 
and against (antiparallel to) the flow of medium, 
we have to calculate the number of wavelengths 
(N) in the medium when u = 0: 
 

   


   (A11) 

 
Thus the optical path lengths of the light 
propagating with (parallel to) and against 
(antiparallel to) the moving medium in the tubes 
are: 
 

 =



 




  (A12) 

 

 =



 




 

(A13) 

And the optical path difference (OPD) between the 
two propagating beams is:  
 

     = 
 

                 L  




 
- 





 
    (A14) 

 
Simplify so that the equation is accurate to the 
second order by applying a Taylor expansion: 
 

  





 
  


   




  


  (A15) 

 
Since the speed of the water (u) is minuscule 

compared to the speed of light (c), to an accuracy 
to the first order, Eqn. A15 becomes:  
 

   

     (A16) 

 
The fringe shift (FS), which is defined as  


 , 

is given by: 
 

FS   


    (A17) 

 
Eqn. A17, which was derived with the assumption 
that light propagates from the source to the 
observer through a single medium, shows that the 
fringe shift is independent of the refractive index.  
This is equivalent to the prediction made by Eqn. 
75, which was derived with the assumption that 
light propagated from the source in air, through 
moving water, and to an observer in air. 
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